
Full Stack Parallel Online Hyperdimensional
Regression on FPGA

Hanning Chen∗, M.Hassan Najafi†, Elaheh Sadredini‡ and Mohsen Imani∗

∗University of California, Irvine, Irvine, CA 92697, USA
†University of Louisiana at Lafayette, Lafayette, LA 70503, USA
‡University of California, Riverside, Riverside, CA 92521, USA

Email: {hanningc, m.imani}@uci.edu, najafi@louisiana.edu, elaheh@cs.ucr.edu

Abstract—Hyperdimensional computing (HDC) has been pro-
posed to more closely model the brain from the abstract and
functionality level. Compared to the traditional sequential re-
gression model, HDC based regression model naturally supports
parallel operation, making it an ideal algorithm to be accelerated
on the FPGA platform. In this paper, we propose HyDRAF, an
FPGA acceleration of hyperdimensional regression supporting
online learning. To overcome the computation overhead from the
long-size hypervector, we introduce multiple FPGA optimizations
to efficiently handle long vector access, such as on-chip storage
partitioning. Furthermore, we optimize the model update process
by using efficient sparse matrix representation. We also integrate
the encoding module into the accelerator to realize online
training by reducing off-chip DRAM access, thus enhancing
FPGA resource utilization. We also evaluate the effectiveness
of our approach on a wide range of regression problems. Our
results show that the FPGA platform provides, on average, 11.8×
speedup and 27.5× energy efficiency compared to the state-of-the-
art regression method running on NVIDIA GTX 1080 GPU. On
a Xilinx Alveo U200 accelerator card platform drawing less than
4 Watt for kernel Virtex Ultrascale+ XCU200 FPGA, HyDRAF
demonstrates up to 1.2 million data classifications per second.

I. INTRODUCTION

Regression is supervised learning which is used to predict

continuous values. It is widely used to estimate the relationship

between a dependent variable. Regression is applied to predict

the outputs, forecast the data, analyze the time series, and

find the causal effect dependencies between the variables [1].

Regression techniques need to rely on sophisticated and costly

deep learning algorithms. However, running these algorithms

during training results in significant computational power

and storage, which is beyond the capability of existing edge

devices [2]. As a result, many devices cannot enable on-device

learning; thus, they stream most data to the cloud for analysis.

This data transmission leads to scalability, security, and privacy

concerns. Therefore, it is essential to enable robust, scalable,

and real-time learning on embedded devices with limited

computing capability and off-chip memory.

Hyper-Dimensional Computing (HDC) is introduced as an

alternative computing model mimicking crucial brain proper-

ties [3], [4] for energy efficiency and robust computation. HDC

is motivated by the observation that the human brain operates

on high-dimensional data representations. In HDC, objects

are thereby encoded with high-dimensional vectors, called

hypervectors, which have thousands of elements [5]. HDC

incorporates learning capability along with typical memory

functions of storing/loading information. It mimics important

functionalities of the human memory model with vector opera-

tions, which are computationally tractable and mathematically

rigorous in describing human cognition. HDC provides several

advantages as compared to existing deep learning solutions:

(1) being highly parallel and suitable for online on-device

learning [5], (2) exposing hidden features; enabling single-

pass learning with just a few samples [6], [7], and (3) being

robust against noise and corrupted data [8], [9].

Since the HDC needs to compute many values for a single

operation, the conventional CPU-centric architecture would

not be the best platform to run the HDC applications. HDC is

easily parallelizable and can benefit from hardware accelera-

tors. Prior work showed how the high-dimensional and parallel

nature of HDC is ideal for acceleration in traditional hardware

platforms, such as FPGA and ASIC [10], [11], [12], [13].

However, prior work primarily focused on HDC classification

acceleration [11], [12], [14], [15]. In contrast, in this paper, we

present a design to accelerate hyperdimensional regression and

support online learning on various different FPGA platforms.

Our solution, called HyDRAF (Hyperdimensional Regression

Accelerator on FPGA), introduces several architectural opti-

mizations to maximize throughput by getting the best use of

FPGA resource utilization. Here are the main contributions of

the paper:

• HyDRAF is an online learning framework for accelerat-

ing hyperdimensional regression on FPGA. Our regression

exploits hyperdimensional primitives to encode raw data

into high-dimensional space. Then, it performs the model

learning process by similarity checking of the distance of

an encoded query with a model in high-dimensional. By

implementing HD encoding, training, and inferring at the

same platform, our solution, therefore, is a real full-stack

HD computing accelerator.

• We conduct hardware/software co-design targeting online

regression task. First, we introduce an on-chip storage

partitioning to efficiently handle long vector. Second, we

optimize the model update process by using efficient sparse

matrix representation. We integrate the encoding module

into the accelerator to realize online training by reducing off-

chip DRAM access (I/O utilization), thus enhancing FPGA

resource utilization.

• Unlike the existing method that encodes data once offline,

our solution explores the opportunity of iterative data encod-

ing. Our solution stores raw data in off-chip DRAM and re-
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Fig. 1. Hyperdimensional regression process.

encode data in every iteration. On the one hand, this ensures

the off-chip memory bandwidth is not a computational

bottleneck. On the other hand, this reduces on-chip data

storing overhead. Encoding data on-chip also enhances the

training and inferring process’s flowing capabilities.

We also evaluate the effectiveness of our approach on a wide

range of regression problems. Our results show that the FPGA

platform provides, on average, 11.8× speedup and 27.5×
energy efficiency compared to the state-of-the-art regression

methods running on NVIDIA GTX 1080 GPU. On a Xilinx

Alveo U200 accelerator card platform drawing less than 4

Watt for kernel Virtex Ultrascale+ XCU200 FPGA and total

41.7 Watt for the whole board, HyDRAF demonstrates up to

1.2 million data classifications per second. During training,

HyDRAF also processes 0.32 million data per second at each

epoch, enabling online learning from the data stream.

II. HYPERDIMENSIONAL REGRESSION

Hyperdimensional Computing (HDC) is introduced by neu-

roscientists as an alternative computing method to model

human memory [3], [12]. HDC mimics crucial properties

of human memory using high-dimensional vectors, called

hypervectors. For example, the brain efficiently aggregates

and memorizes the relationship between data. In the HDC,

the addition of hypervectors imitates the data aggregation,

and we can quantify the inter-data relationship based on the

hypervector similarity.

Figure 1 shows an overview of Hyperdimensional regres-

sion [4]. The first step in HDC is to map each data points

into high-dimensional space. The mapping procedure is often

referred to as encoding. The regression function operates over

encoded data. During regression, we first create two sets

of models: Cluster Model to cluster data points with high

similarity, and Regression Model to perform the prediction.

Each model consists of multiple vectors with the same dimen-

sionality as encoded data points. Each vector in the regression

model corresponds to a cluster of inputs aggregated in a

cluster hypervector. During training, HyDRAF first checks the

similarity of a data point with the input model. Depending on

the search result, we update the cluster and regression model

accordingly. Here, we explain the details of HDC regression.

Hyperdimensional Encoding: Encoding is the first op-

eration involved in HDC. Here, we consider the state-of-

the-art encoding method for feature vector. Let us consider

an encoding function that maps a feature vector �F =
{f1, f2, . . . , fn}, with n features (fi ∈ R) to a hypervector

�H = {h1, h2, . . . , hD} with D dimensions (hi ∈ R). We

generate each dimension of encoded data by calculating: �H =∑n−1

k=0
fi · �Bi, where �Bi ∈ {0, 1}D are randomly generated

base hypervectors. Since randomly generated hypervectors are

nearly orthogonal (δ( �Bi1 ,
�Bi2) � 0, where δ denotes the cosine

similarity), each base hypervector can retain the spatial or

temporal location of each feature in an input.

Model Learning: Let us assume HyDRAF with k

models. HyDRAF stores two sets: cluster hypervectors

(C = {�C1, �C2, · · · , �CK}) and model hypervectors (M =
{ �M1, �M2, · · · , �MK}). The cluster hypervectors are initial-

ized to random binary values, while model hypervectors are

initialized as zero hypervectors. Figure 1 shows the function-

ality of regression over encoded data. We first check the simi-

larity of �S with all cluster hypervectors. Each similarity value

shows the confidence that a data point belongs to that cluster

(•a ). For the same encoded data, we also perform regression

on the k available models (•b ). Then, we predict the output

value using all models and their corresponding confidence

value (•C ): ŷ =
∑K

i=1
δ(�S, �Ci) �Mi. �S. The predicted value

is the weighted accumulation of all regression models. The

weight of each model, δ(S,Ci), determines the confidence of

each cluster center for having �S. During training, HyDRAF

updates the model based on how far is this prediction from the

actual output value (•d ): �Mi ← �Mi + α(y − ŷ)× �S, where

term ‘y − ŷ’ indicates the error between the actual output

and predicted result and ‘α’ a hyperparameter that controls

the speed of model update during the training phase. Our

regression model continues iterative updates over training data

points until the quality of regression stabilizes during the last

few iterations.

III. HYDRAF OVERVIEW

The hyperdimensional regression model has sequential

computing process [4]. The encoding module, cluster-

ing/regression, and model update are happening one after each

other to perform a regression task. This sequential computing

is suitable for CPU-centric architecture as CPUs have access

to limited resources. CPU is more suitable for control logic

complex computation but less parallel computation. However,

accelerators often have a huge number of resources that could

use to parallelize the regression process. This makes it more

suitable to be realized on computing devices with a large

volume of computation units, such as FPGA and GPU. Unlike

neural network, HDC operates over low-precision values that

makes it optimal for acceleration on FPGA platform [12].

However, the long size of the hypervector makes it hard to

naively move HDC design into FPGA. For fully parallel HDC

computation and high throughput regression, it is necessary

to fully utilize on-chip resources. Previous work [4] only

proposed using HDC for regression task, but on the one hand

didn’t optimized its regression algorithm based on FPGA’s

available resources, on the other hand is a sequential learning

process. In this section, we conduct a hardware/software co-

design and introduce multiple optimization techniques to ac-

celerate HDC regression on a wide range of FPGA platforms.
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A. Matrix-Based HD regression

HDC regression is performed originally sequentially for

each training sample [4]. However, to utilize FPGA parallel

computing capability, we develop a solution to train regression

on a batch of data. The batch-based training maximizes

the FPGA resources utilization and also balance FPGA I/O

overhead. In FPGA, I/O utilization (i.e., AXI4 bandwidth)

significantly impacts the required time to load data from off-

chip memory (e.g., DRAM) to FPGA. Here, we propose a

matrix-based, parallel HDC regression model enabling highly

parallel batch training. Our solution significant speeds up the

training computation.

B. Model Update

Let us assume our regression model has K cluster hyper-

vectors (C) and accordingly k regression hypervector (M).

We suppose the size of each hypervector is D. The purpose

of using cluster hypervector is to select regression hypervector

according to each input hypervector. The cluster hypervector

matrix is initiated to random values, while the regression

hypervector matrix is initiated with all 0 elements. Let us

assume a batch of encoded data with size of N : H =
{ �H1, �H2, ..., �HN}.

To update each features of our regression model, the first

step is to generate the confidence matrix Δ. The calculation

is conducting inner production of training batch matrix H

and cluster matrix C: Δ = H · CT , where C
T indicates a

transposed clustering matrix. The generated confidence matrix,

Δ, has a size of K×N . In this matrix, each row corresponds

to one training data in a batch, and the column represents the

number of clusters. For example, Δij represents ith train data

in a batch and its corresponding confidence to cluster jth. We

also apply softmax function to normalize Δ to get Δ
′. The

final confidence matrix Δ
′ is like a weight matrix in a neural

network which will be used later. Parallel with the clustering

process; we also predict the regression outcome using input

H and regression matrix M: P = H ·MT .

To compute the regression result, our solution weights every

regression model using the confidence matrix Δ
′ obtained

from cluster model. We call the weighted prediction result,

Y = P ⊗Δ
′. The reduction of this outer product on cluster

direction gives us �Yr. Here, Yri is the prediction of the ith

training data in the batch.

Model Update We use the prediction result to update

the cluster hypervector matrix C and regression hypervector

matrix M. We will calculate loss first for each training batch

and use the loss with the training batch to update the model.

The loss calculation is: �E = �Yr − �Yt, where �Yt is the label of

the training batch. For regression hypervector matrix update,

each member of training batch will be multiplied with its

prediction loss and added to each clusters of regression matrix:

M
i
new = M

i
old + α ∗

N∑
j=1

Ej ∗Hj for i ∈ [1,K]

Cluster Update: For cluster hypervector matrix, the update

process is more complicate. Since each hypervector is able to

store limited information, we only need to update each training
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Fig. 2. Top FPGA Microarchitecture Design.

batch’s member for a cluster hypervector that has the highest

confidence. Otherwise, our regression results will be overfitted.

We use a select matrix, called S, which has N ×K size. The

rows and columns of the select matrix represent the cluster and

batch indices, respectively. The value of matrix S is shown

below:

Si,j =

{
1 max {Δj} == Δi,j

0 otherwise

This indicates that for every element of select matrix S,

for example, Si,j will be 1 only when the training batch’s

jth data’s highest confidence index is cluster i. Otherwise, the

value of S is 0. After having the select matrix, we can update

the cluster hypervector matrix:

Cnew = Cold + S · {LT ·H} (1)

In other words, we first compute the dot product of LT and H,

so each encoding hypervector of the training batch is multi-

plied with its corresponding loss value. We call the production

result as Hnew. Then, we calculate the dot product of the select

matrix with this updated training batch hypervector matrix

Hnew. In this way, all training hypervector that should update

the same cluster hypervector will be accumulated.

C. Prediction

After training the regression model, we can use the model to

predict new data. There are two steps for new data prediction.

The first is to use the same encoding method as mentioned in

the training process to map the new data into high-dimension.

Here, we only need to encode one data point instead of a

batch of data. The second step is to compute the similarity

of encoded hypervector with the cluster matrix C to generate

confidence vector Δp. Finally, we perform the prediction using

the following equation: Y =
∑K

i=1
Δpi(Mi ·H).

IV. HYDRAF OPTIMIZATION

Our solution performs regression over a batch of encoded

data coming from off-chip DRAM via AXI Interconnect, based

on AMBA AXI4 bus protocols. In the first step, HyDRAF

computes the similarity of a query with cluster hypervec-

tors (•1 ). Meanwhile, HyDRAF also predicts the regression

outcome between model matrix and query (•2 ). With batch

query hypervector input, both two operations (•1 and •2 )

are matrix-matrix multiplication (M2MM). The regression
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prediction is weighted by confidence matrix (•3 ), which is

a two-matrix outer product operation. After calculating the

loss result, we update the regression model and cluster model

(•4 and•5 ). Updating cluster model is much harder since in

naive implementation, to avoid memory access conflict, there

is two M2MM operations during the updating process (•5 ). In

this section, we analysis the main challenges of implementing

our HDC-based regression on FPGA. Then, we present our

optimization techniques for highly optimized and efficient

regression implementation on FPGA.

A. Hypervector Fragmentation

Unlike traditional neural networks, HDC regression oper-

ates over hypervectors using well-defined hyperdimensional

primitives. HDC works transparently based on information

theory. The capacity of each hypervector to memorize or

learn information can be mathematically defined. This capacity

depends on two factors: (1) dimensionality of a hypervector,

(2) precision of each hypervector element. In HDC, there is

a trade-off in selecting dimensionality and precision. Using

low precision hypervectors (e.g., single-bit), HDC needs to

rely on very long hypervectors for computation. On the other

hand, by increasing the precision of each element, HDC can

operate over shorted size vectors. This shorter size should still

be long enough to ensure nearly orthogonal representation.

For example, a binary hypervectors with D = 10k has a

similar theoretical capacity as an 8-bit precision hypervector

with D = 1k. The selection between high or low precision hy-

pervectors depends on the underlying hardware. For example,

FPGA has access to several low-cost lookup tables (LUTs).

We partition the long hypervector into several sizes of T

chunks where each chunk consists of an equal number of

dimensions with a certain precision (e.g., 4-bits). This will

fragment a single hypervector into D
T

chunks. These chunks

will be pre-fetched into on-chip memory (shown in Figure 3).

In our architecture, the complexity of operations relates to the

precision of hypervector elements, and the dimensionality of

matrix multiplication relates to chunk size (T).

B. On-chip Storage Partitioning

We partition all data stored on-chip, including cluster model

matrix, regression model matrix, and training data matrix.

This partitioning parallelizes the matrix multiplication and

pipelines the computation. During the FPGA design pro-

cess, we partition the original 2-dimensional matrix into 3-

dimensional. Figure 3 shows the cluster matrix stored in

K clusters
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Fig. 4. M2MM accelerator microarchitecture design.

partitioned BRAM blocks. The first dimension is the index

of the chunks (Figure 3). The matrix operation size depends

on the chunk size (T ); increasing a separate dimension here

will make the later accelerator’s pipeline design much more

manageable. In this way, later M2MM operation and on-chip

BRAM update will be chunk by chunk pipeline. The second

dimension is the number of clusters or the batch size (Fig-

ure 3). For each cluster, M2MM will be independent read and

write to speed up the execution. The third dimension represents

the size of each chunk. In our design, the first and second

dimensions of on-chip BRAM are fully partitioned to pipeline

the matrix multiplication through chunks and parallelize the

multiplication and addition inside chunks.

C. Systolic Array Acceleration

Prior HDC researches exploit vector-vector or vector-matrix

operations, which mainly use tree adders and single boolean

logic to finish the computation. On FPGA with massive

parallel operation supported, it is necessary to use M2MM

operation. In this work, we leverage systolic array to enable

parallel hypervector multiplication. As shown in Figure 4, we

take similarity check between query and cluster matrix as

example to illustrate the design. The height of the systolic

array is the batch size, N , and its width is cluster size,

K. There will be N × K processing elements (PE) in the

whole array. Each PE consists of a 8-bits to 8-bits (depending

on the data type of the accelerator, it could be 4-bits to 4-

bits) multiplier and a accumulator. As mentioned before, we

partition the on-chip cluster matrix, regression matrix, and

training batch data, which makes the foundation for pipeline

calculation of the matrix-matrix multiplication calculation.

Due to pipeline, the M2MM complexity is reduced from

O(K ·N ·T ) to O(T +max{K,N}). Here the pipeline stage

is the chunk size T , the initiation interval (II) is the single PE

execution time. In theory, the total execution time (Texec) for

one chunk of training batch (N×T ) inner product with cluster

matrix (K × T ) will be: Texec = II × (T +max{K,N}).

D. Updating-Matrix Sparsity

Compared to the sequential regression model, one of the

obstacles of HyDRAF is using the select matrix to update the

cluster hypervector matrix BRAM. Let’s revisit Equation (1).

Although we can create a select matrix S efficiently in the
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softmax layer, the way that the register or BRAM is used

to store the select matrix is not efficient. Since for each

data of training batch, it can only have one target cluster,

which means for a K × N S matrix, there are only K 1s

and the rest will be 0. The matrix S is a typical sparse

matrix. Another problem of Equation (1) is that there are

two M2MM operations involved, where one of them is sparse

matrix-matrix multiplication(SpM2MM). Although FPGA has

powerful parallel processing ability by deploying systolic array

accelerator, we use coordinate list (COO) to store select matrix

information and use only one matrix-matrix multiplication to

finish cluster matrix update. As shown in Figure 5, we will

have one cluster index array (Si) with size K. The index of

the index matrix, Si, will be the address of training data in the

batch, and the value of the array element will be the index of

the cluster. For example, suppose 1th member of the training

batch has a corresponding cluster index of 3. In this way,

Si[1] = 3. We also need Sc to store the confidence value of

the select matrix. It is obvious to see that the storing overhead

or space complexity is reduced from O(K×N) to O(2×K).

Besides reducing space complexity, using COO representation

also reduces time complexity. We modify the Equation (1)

below:

Cnewi = Coldi +Hj · Sc[j] · L[j] (2)

Here j is the index of data in training batch and its range

is [1, N ]. The i is the index of j’s corresponding highest

confidence, which is:

i = Si[j] for j ∈ [1, N ] (3)

Based on (2) and (3), the new time complexity of updating

cluster matrix BRAM for each chunk is reduced from O(T ×
N + (T + max(N,K))) to O(T × N). After using COO

representation for sparse select matrix, both execution time and

hardware resources utilization efficiency have been improved

significantly.

V. EVALUATION

A. Experimental Setup

We synthesize and implement our accelerator design on

several different FPGA platforms with different available re-

sources, including Xilinx Virtex UltraScale+ FPGA VCU118,

Xilinx Alveo U200, and Xilinx Alveo U250. Specifically, we

design and debug our accelerator on Xilinx Vitis HLS[16].

After generating the accelerator’s RTL code from Vitis, we

import it as an IP module into Vivado[17]. The system-

level block design on Vivado is shown in Figure 6. HyDRAF

access off-chip DRAM via AXI Interconnection IP. We use a

Fig. 6. HyDRAF system level design.

Fig. 7. Comparison of the mean square error (MSE) of regression between
HDC-based regression model and DNN on different datasets when K = 8 and
D = 2K bytes.

memory management unit (MMU) between HyDRAF and AXI

IP to transfer memory address space from 64 bits to 32 bits.

Since our accelerator is targeting to be deployed on an edge

computing environment, the MicroBlaze CPU, a lightweight

Xilinx softcore CPU widely used in embedded system design,

is used to control the accelerator. We also compare the C++

version of our design on ARM Cortex A53 CPU and PyTorch

for optimized implementation of HDC regression on NVIDIA

1080 GPU. One of the common problems that restricted FPGA

accelerator development is the balance between resources

utilization and performance.

B. Parameters and Datasets

There are five knobs in our design: single data precision (P),

the number of chunks that we use to divide the hypervector,
D
T

, each chunk’s size of T , the number of cluster K, and

the size of batch N . Each parameter affects HDC regression

accuracy and performance. We report the effectiveness of our

approach in terms of both algorithm accuracy and hardware

efficiency. The algorithm metric is validation loss, while the

hardware metrics include throughput and energy consumption.

We evaluate HyDRAF accuracy and efficiency on popular

regression datasets, including Boston housing (Boston) [18],

NASA airfoil self-noise (Airfoil) [19], wine quality prediction

(Wine) [20], Facebook performance metrics (Facebook) [21],

combined cycle power plant prediction (CCPP) [22], and forest

fire prediction (Forest) [23].

C. Quality of Regression

Figure 7 compares HyDRAF’s regression accuracy with the

deep neural network (DNN). Here the DNN model is trained

with Tensorflow[24]. Here we choose the mean square error

(MSE) as the measurement of the model’s regression error

metrics. Less MSE represents higher regression quality. Our

HDC-based regression model with configuration in Figure 7

shows relative regression accuracy compared with DNN.
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TABLE I
QUALITY OF HDC REGRESSION USING DIFFERENT PRECISIONS, NUMBER OF CLUSTERS, AND THE DIMENSIONALITIES.

8-bit Precision 16-bit Precision Float Precision

# clusters (K) \ Dimension (D) D=0.5k D=1k D=2k D=3k D=4k D=0.5k D=1k D=1k D=3k D=4k D=0.5k D=1k D=2k D=3k D=4k

K=1 75.1 78.7 82.2 84.0 84.0 79.1 82.8 86.5 88.4 88.4 80.7 84.5 88.3 90.2 90.2
K=2 77.7 82.2 84.9 86.7 86.7 80.9 85.6 88.4 90.3 90.4 82.6 87.4 90.2 92.1 92.1
K=4 86.6 89.4 91.7 92.1 92.2 88.3 91.2 93.5 94.0 94.0 88.3 91.2 94.1 94.1 94.1
K=8 87.5 87.5 90.3 91.2 94.1 88.3 91.2 93.5 94.0 94.1 91.2 93.1 95.0 95.0 95.0
K=16 91.2 92.2 94.3 94.3 95.0 92.1 93.1 95.0 95.0 95.0 92.6 93.4 95.0 95.0 95.0
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Fig. 8. Comparison of HyDRAF efficiency as compared to state-of-the-art DNN on GPU and FPGA.

The quality of HDC regression directly depends on the

parameters. Table I shows the average quality of regression

using different bit precision, dimensionality, and number of

clusters. For precision, we exploit 8-bits, 16-bit, and floating-

point. The number of clusters is also changing from K = 1 to

K = 16. All results are reported using a batch size equal to

N = 8. Our evaluation shows that HDC regression can provide

maximum quality of using any precision. However, for low

precision models, HDC requires a higher number of clusters to

ensure maximum quality. For example, our regression ensures

maximum accuracy using K = 12 clusters using the floating-

point model. Using 8-bit precision, the same accuracy can be

provided using K = 16 clusters.

In addition, Table I shows the impact of hypervector dimen-

sionality on HDC regression accuracy. Similar to the num-

ber of clusters, HDC regression accuracy increases with the

hypervector dimensionality. However, this accuracy saturates

using a hypervector larger than D = 3k. For example, HDC

regression using D = 2k and D = 512 only provide 0.7%

and 3.8% lower quality as compared to regression with full

dimensionality of D = 4k (K = 16 and 8-bit precision

model).

Dimensionality is also in trade-off with the number of

clusters. To provide the same quality or regression, one can

select to use a high-dimensional model with a lower number

of clusters (D � and K �) or a higher number of clusters

with lower dimensionality.

D. Efficiency vs. State-of-the-art

Figure 8 shows the performance speedup and energy effi-

ciency of HyDRAF running on GPU and FPGA. The results

also compare HyDRAF efficiency with state-of-the-art HDC

implementation [4] and state-of-the-art DNN accelerators run-

ning on GPU and FPGA. We used DNNWeaver V2.0 [25] for

efficient implementation of the NN inference, and FPDeep [26]

for NN training on a single FPGA device. FPGA implemen-

tations are optimized to maximize performance by utilizing

FPGA resources. All results listed in Figure 8 are relative to

DNN performance and energy efficiency. Note that we com-

pare the baseline DNN and HDC regression since several ex-

isting optimizations, e.g., model binarization or pruning [27],

can be applied to both methods. During training, HyDRAF

achieves, on average, 12.6× faster and 14.1× more energy-

efficient computation than FPGA-based DNN implementation,

respectively. The high efficiency of HyDRAF in training comes

from: (i) HyDRAF capability in creating an initial model

that significantly lowers the number of required retraining

iterations. (ii) It eliminates the costly gradient descent for the

model update. This results in a higher HyDRAF efficiency,

even in terms of a single training iteration.

Figure 8 also compares HyDRAF efficiency using different

bit precision. In each bit precision, the hypervector dimension-

ality is set to ensure HyDRAF provides maximum accuracy.

For instance, HDC regression exploits hypervectors with D =
512, D = 1k, and D = 2k for models with floating point, 16-

bits, and 8-bits precision, respectively. Our evaluation shows

that our FPGA acceleration provides maximum throughput and

efficiency when using low-precision (and high-dimensional)

vectors. At the same time, GPU is more effective in dealing

with floating-point (and low-dimensional) vectors. Particularly,

using 8-bit precision, HyDRAF supports regression operation

using efficient LUTs, while FPGA needs to rely on limited

and costly Digital Signal Processor (DSP) blocks to support

floating-point operations. Our results indicate that HyDRAF

using 8-bits precision can provide 6.1× and 5.7× (1.5× and

1.4×) speedup and energy efficiency compared to floating-

point (16-bits) models, respectively.

We also provide an FPGA kernel power breakdown in

Figure 8c to make a comparison of the power efficiency

for different data precision. The power estimator tool that

we used is the Vivado power estimator, and the targeting

device is Xilinx Virtex Ultrascale+ XCU200 FPGA. It is pretty

obvious to see that, compared to fixed-point operation, the

floating-point operation uses more LUTs and more DSPs when

accessing on-chip storage and carrying multiplication-addition

operation. Therefore, floating-point based operations consume

more power compared to fixed-point operations. Therefore,
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Fig. 9. Impact of different optimization techniques on HyDRAF resource
utilization and latency (single batch).

it makes sense that the energy efficiency will decrease when

doing a higher precise mathematical process.

E. HyDRAF Optimizations and Comparison

Figure 9 shows the impact of different HyDRAF opti-

mizations on the performance speedup and energy efficiency

improvement of HyDRAF. All results are compared to DNN

running on GPU. For HDC, we use the state-of-the-art regres-

sion implementation in [4] as the baseline. HyDRAF results

are reported for three main optimizations: (1) using systolic

array, (2) coordinate list, (3) pipeline the systolic array.

To ensure high computation efficiency, our platform relies

on FPGA LUTs. However, the baseline FPGA implementation

can often occupy around 1% of the FPGA LUT resource.

Each of our optimizations aims to increase LUT utilization

and provide higher computational throughput. For example,

coordinate index optimization enhances the LUT utilization

from 1% to 14% by parallel the cluster model updating

process and avoid redundancy M2MM calculation. Similarity,

pipelining the systolic array improves LUT resource utilization

to 40% by using more LUTs to parallel on-chip storage access

and matrix-matrix multiplication, respectively. Our evaluation

shows that HyDRAF with all optimizations achieves 87%

resource utilization, improving the latency by 63× compared

to the baseline implementation.

F. Resource Utilization & Performance Trade-off

The performance of our FPGA implementation has a direct

relation with on-chip resources. The following four types of

resources are important for FPGA acceleration: block random

access memory (BRAM), LUTs, Flip Flops (FF), and DSP.

Here, we first analyze the main performance bottleneck of

our acceleration and then illustrate how to choose the suitable

configurations based on the performance requirement.

Tune HyDRAF Parameters: For our regression model

with batch parallelism, the most resources utilizing processes

are: (1) Similarity check and (2) Inner product, as both

require large-scale matrix-matrix multiplication. To maximize

the parallelism, we partition the on-chip storage based on the

matrix’s size. When the hypervector size (D) is constant, the

four important knobs to determine the size of the accelerator

are: batch size (N), regression model and cluster size (K), the

chunk size (T ), and the data precision (P ). Our framework

enables users to tune the parameters based on their desired

metrics. Increasing the value of N will bring faster training.

Larger K and P values improve the quality of regression.

However, we limited these two parameters to k = 8 and P = 8
to ensure maximize computation efficiency.

TABLE II
HYDRAF RESOURCES UTILIZATION AND PERFORMANCE WITH DEFAULT

PARAMETER OF OFF-CHIP ENCODING VERSION

Dimension (D) 0.5K 1k 2k 3k 4k

LUTs 578898 643046 778774 1100240 1678453
FF 247713 349441 542635 732119 1174445

DSP 76 76 76 78 78
FPGA Boards Alveo U200 Alveo U200 Alveo U200 Alveo U250 VCU118

Ltrain(cycle) 1503 2136 3422 5501 6034
Linfer(cycle) 53 81 113 144 177

Chunk Size: Figure 10a shows the latency and resource

utilization of FPGA when the chunk sizes varies from T = 16
to T = 128. As we expect, using a larger chunk size increases

resource utilization and throughput. However, the latency

improvement does not linearly scale with resource utilization.

A large chunk size significant resources the overhead of

pipelining. We observe that using 64 chunk size provides max-

imum throughput improvement efficiency. However, further

increasing the chunk size significantly increases the resource

utilization while having a minor impact on HyDRAF latency.

Our evaluation shows that using 128 chunk size has 1.9×
lower latency improvement per resource utilization than with

64 chunks. Note that HyDRAF with chunk size larger than

T = 64 cannot fit inside our Alveo 200 accelerator card.

Resource Utilization: Table II reports the details of our

FPGA implementation: latency and resources utilization when

hypervector size varies from D = 512 to D = 4k. In all

experiments, the BRAM utilization is less than 5%. Our results

show that using a larger hypervector size increases the FPGA

resource utilization. Table II lists the FPGA board that can fit

our regression model without compromising the performance.

For all configurations, the clock cycle is 7.3 ns. Our evaluation

on an Alveo U200 Accelerator Card platform drawing less

than 4 Watt for kernel Xilinx Virtex Ultrascale+ XCU200

FPGA and 41.7 Watt for the whole board shows that HyDRAF

can process 1.2 million classifications per second during

inference. During training, the throughput is 0.32 million data

per second at each batch.

Our evaluation also shows that, unlike our expectation,

the FPGA latency increases linearly with hypervector dimen-

sionality. We observe that the increase in the latency comes

from loading a larger amount of encoded data from I/O. One

solution to resolve this is to load original data and perform on-

chip encoding, rather than storing and loading large encoded

hypervectors from off-chip DRAM. We will discuss more

details of encoding online in section V-G.

G. HyDRAF Encoding On-chip vs. Off-chip

Due to AXI I/O bandwidth limitation and on-chip parti-

tioning, storing and loading access time increase significantly

with hypervector dimensionality. We address this issue by

enabling on-chip encoding, storing and loading original data

from off-chip DRAM. Figure 10b compares HyDRAF latency

during off-chip and on-chip encoding when the hypervector

dimensions varies from D = 512 to D = 4k. Our evaluation

shows that using a low-dimensional hypervector, it is more

desirable to perform off-chip encoding as I/O cost is minimal.

However, as hypervector size is growing, the on-chip encoding

outperforms the off-chip method. Although on-chip encoding
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Fig. 10. On & Off-chip Encoding’s affect on training latency.

pays an extra cost for repeated data mapping, it eliminates the

cost of loading large hypervectors, thus eliminating the I/O

from being the computational bottleneck.

VI. RELATED WORK

Hyperdimensional computing (HDC) has been proved to

be successful in multiple cognition tasks [28], [29]. [4] is

the first work proposed to handle regression tasks based on

multi-model HDC. Due to HDC’s hardware-friendly opera-

tion, multiple hardware accelerators have been investigated,

including designing new ASIC [30], exiting FPGA [12], [14],

[31], and processing in memory (PIM) architectures [32],

[33]. However, all these accelerators are targeting classification

tasks. Although [4] proposed a new HDC based regression

framework, it is not efficient on FPGA since it didn’t fully

utilize FPGA hardware resources and didn’t consider regres-

sion hypervector matrix’s sparsity problem. Our approach:

HyDRAF, based on the previous HDC regression algorithm,

is optimized considering FPGA on-chip resources, memory

boundary, and matrix sparsity, and is proven to be successful

when handling regression tasks. Besides, compared to [4]

which relied on CPU to implement HD hypervector encoding

process, we successfully integrate it into our on-chip acceler-

ator design to break the memory boundary and realize online

learning.

VII. CONCLUSION

In this paper, we propose an FPGA acceleration of hyperdi-

mensional regression supporting online learning. To overcome

the computation overhead resulting from the long size of the

hypervector, we introduce multiple FPGA optimizations to

efficiently handle long vector access, such as on-chip storage

partitioning. Furthermore, we optimize the model update pro-

cess by using efficient sparse matrix representation. We also

integrate the encoding module into the accelerator to realize

online training by reducing off-chip DRAM access.
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